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The geophysically important problem of the freezing of an in- 
finitety thick liquid subjected to a constant external temperature 
sufficient to freeze it was formulated and solved by 8tefan as long 
ago as 1891 [1]. In both nature and technology, however, solutions 
of various substances are encountered rather than pure liquids. For 
this reason it is of interest to consider the analogous problem for 
solutions. 

In this study we l imit  ourselves to the case of binary solutions 
which on freezing do not form mixed crystals ("solid solutions'). To 
solutions of this type belong, in particular, solutions of many inorganic 
substances in water (for example, sodium chloride in water). 

We will also assume that the concentration of the dissolved sub- 
stance is less than the eutectic concentration [2]. Such relatively 
weak solutions are most often encountered in nature. In fact, the 
salt content of sea and lake waters usually does not exceed several 
percent by weight, while the eutectic concentration of sodium chlo- 
ride in water is about 30%. 

It is well known [2] that during the freezing of solutions of sub- 
eutectic composition ordy the solvent solidifies, Consequently, if a 
sufficiently low constant temperature is applied to the surface of 
such a solution, a zone of solvent solidification will extend from the 
surface into the depth of the solution. The dissolved substance must 
move away from this zone, If the freezing process is taken to be 
sufficiently slow, then it is natural to assume that the withdrawal of 
the substance occurs by diffusion. Thus the freezing of binary so lu-  
tions at relatively low concentrations will be described by simul-  
taneous equations of thermal conductivity and diffusion, 

We present below a mathemat ica l  formulation of the problem of 
the freezing of such solutions, give its solution, and evaluate the 
effect of diffusion processes during the freezing of aqueous salt solu- 
tions. 

1o Formulation of the problem. Let the solution initially occupy 
the lower portion of a space, and the x axis be directed down into 
it. We take T~(x, t), T2(x, t) as the temperatures of the frozen sol- 
vent  and the solution, and e(x, t) as the concentration of the  sub- 
stance dissolved in the solution. These quantities will satisfy the 
following equations: 

OT 1 O~TI 
ot - -  z~ ~ (o < z ' ~  t (t)) q (o) = o),  

(1.1) 
OT~ O~T2 Or O~c 

ot - ~ 0--g~-' ~ / -= /~ -b~ '~  ( t ( t ) < z < ~ ) ,  

Here /(t) is the coordinate of the moving boundary of the phase 
transition, ~h, vh are the thermal conductivity coefficients of the 
solid and liquid phases, D is the diffusion coefficient. In addition, 
it is necessary to fulfil the initial conditions and conditions at in- 
finity. 

r 2 ( x , 0 ) =  r2(oo, t ) =  r~ c(x, 0 ) = o ( o o ,  t ) =  e0, (1.2) 

and also the boundary conditions for T 1 and T z at x = 0 and x = Z(t), 

dl OT2 x=! -}- 
TI (Ot) = O, pL W ----- - -  ~ -~x 

(1.8) 
-4- ~ 0I'20___~_ ]x=z'l T ~ ( l , t ) ~ T ~ ( l , . t ) - ~ -  T O , 

where p is the solvent density, Xi, X~ are the thermal  conductivity 
coefficients of the solid and liquid phases, and L is the specific heat  
of melt ing of the solvent. 

There exists a relationship between the solution concentration 
c(l, t) at the phase transition boundary and the solidification t em-  
perature of the solution, T*; it is given [2] by the equation 

T ~ T.  [t - -  kc (l, t)l ( M" \ 
= k = - - - C - - 6 - ~ ) .  (1.4) 

Here 2~, is the freezing temperature of the pure solvent in *K, 
and M', M are the molecular weights of the solvent and the solute; 
R is the gas constant, 

In addition to the relations (1.3) and (1.4), one more condition 
must be fulfilled at the phase transition boundary. Let us consider 
the mass balance for the solute (in units of area) included between 
the cross sections x = x 0 and x = l(t), where x 0 > l(t). On the one 
hand, we can write 

d ~  Oc ~=xo dt -'~ D ~ , (1.5) 

On the other hand, using the diffusion equation, we find 

d m  d Oe dl 
dt  - -  dt v d x =  ~ - d ~ : - - e  (/,it) --~------ 

Oc 
x=xo--  D O'~z x=Z 

dl 
= D - ~  - c  (t, t) -d[  . (1.6) 

Equating (1.5) and (1.6) we obtain 

dz _ D__~_oc [ (1.7) 
dt  - - - -  e ( l  t) Ox [x=Z(t)" 

Thus the problem of the freezing of a weak solution (subeutectic) 
is completely described by Eqs, (1.1) and the conditions (1.2)-(1.4), 
(1.7). 

2. The general solution. Carrying out a dimensional analysis of 
the controlling parameters of the problem, using the method de-  
scribed in [3], we conclude that it is self-similar.  The solution takes 
the form 

erf~ B 

fi# 

2 
/ ( t ) : 2 ] / ' ~ - ( e r f e ~ : t - - e r f ~ ,  e r f ~ - - ~ ! e - ~ ' d ~ ) .  (%1) 

Using the conditions (1.2), (1.4), (1.7) and also the  first and third 
conditions of (1.3), we obtain 

A =- 1, B -~- e_cq D - -  f ~  erfe ] / ' ~  ' 

= T *  I t - - k c 0 - -  ( 0 / T , )  e r f ; ~ - -  ke0 e erfe f ~ / O l  
err u , g~ ---- To, 

T,  (i - k,o - o / T .  - -  k~oB erfc 1 / ' ~ )  

s T * [ t ' k c ~ 1 7 6 1 7 6  (2.2) 

eric Vc* lu~ 



JOURNAL O F  A P P L I E D  M E C H A N I C S  AND T E C H N I C A L  P H Y S I C S  107  

Vrom the first equat ion of (2.1) it is seen that  at  the phase t ran-  
si t ion boundary the solute concent ra t ion  c( / ,  t) is constant, where 

c(Z, t) > %. It therefore follows from (1,4) that  the t empera tu re  T ~ 

is also constant  and T ~ < T.(1 -- k%). 

We obtain the equat ion  for de te rmin ing  a from the second con-  

di t ion (1.3), 

s 

(~ _ A0 exp ( - -  a / x2) (To - -  0) ]*coT. B erfc + 

- / ~  \ ~ ( ]  T ,  erl ( g a - 7 ~ D  A0 ] 

A0 = T .  (t  - -  kCo) -- O. (2.3) 

I t  is seen from Eq. (2.3) that  a = 0 for 0 = T . (1  -- kc0). 

If we put c o = 0 in (2.2) and (2.3), we obta in  the formulas for 
the problem of the f reez ing of a pure solvent  [1, 4]. Disregarding 

the f in i te  diffusion t i m e  in the solut ion (i. e . ,  for D = ~o and c = cO), 
Eq. (2.3) for the de t e rmina t ion  of a takes  the form 

pLxa ( ~ ) ' / ,  AOexp(--a/x~) , T o - - 0 ,  
- -  ( I - -  - V / - )  + 

+ ~ ~ xz I T.  erf ],fa/xj. (2.4) 

3. The effect of solute diffusion on the velocity of the phase 

transition boundary. As a l ready  noted, as a resul t  of solute diffusion 

from the phase t ransi t ion boundary into the body of the solution, its 

concent ra t ion  at  the boundary is m a i n t a i n e d  above the equ i l ib r ium 
concent ra t ion .  

This leads to an add i t iona l  depression of the solut ion f reezing 
tempera ture .  Since the diffusion constants of solutes in l iquids  are 

smal l ,  i t  is expec t ed  tha t  this e f fec t  wi l l  be  s igni f icant .  To eva lu -  

a te  this e f fec t  q u a n t i t a t i v e l y  i t  is necessary to m a k e  use of Eq. (2,3), 

Let us consider, for s imp l i c i t y ,  the  case  when the i n i t i a l  t e m -  

pera ture  To = T.(1 - kc0). Then 1 -- (T o -- 0 ) /A0 = 0 and Eq. (2,8) 

can be rewr i t ten  in the fo l lowing form: 

A 0  ID 1 
T, (z) + a)~ (0, 

= V=-T/;, o,  ( , )=  l I ~ p L ~  ":" err ~, ) , . T .  - z e x p  ( ) 

(Da ( z )=  kcoB (z) erfc [(--~)'lt z] ( t + 

s ]/x,---7~-2 err z exp [ : ( 1  - -  • 

Here B(z) is g iven  by gq. (2,2). From phys ica l  considera t ions  i t  

is c l ea r  that  the quant i ty  T:12x0 must be a m o n o t o n i c a l l y  increas ing  

function of z, g iv ing  the s i n g l e - v a l u e d  inverse re la t ion  z = ] (T] tA0) .  

For z << 1 

2pLy% , 

r  (*) = kc~ (=) erfc k\ /) /V' ' J  k 1 +  -~-~I-~7: )" (3.2) 

If the condi t ion  ~ << 1 is also ful f i l led ,  then 

,:<,,,,, 

Equation (3.1) shows what  the r e l a t i v e  d i f fe rence  should be b e -  

tween  the in f t i a i  and boundary t empera tu res  for the g iven  law of 

boundary m o v e m e n t  (z = const). The t e rm ~z(z)  in this  equat ion  

cha rac t e r i ze s  the  diffusion effect .  

If, in fact, diffusion were to occur  instantaneously (D = % c = 

= c0), then 

A0 
T, =(Dl(a) ,  ~D2(z)--~ 0. (3.4) 

In eva lua t ing  the quant i t ies  @t(z) and @z(z) we wi l l  consider the 
impor tan t  prac t ica l  case of a solution of sodium chlor ide  in water. 

If the sodium chlor ide  concent ra t ion  is expressed in weight  percent, 
then for such a solution k = 2.2 �9 10-a (see [4]) and D = 10 ~ cmZ/sec, 

z I <Dr (z) ~,  (z) 

3 '5" t0-4  1 1"6"t0-~ 
3 . 5 . t 0  -a 1 .6 . t0  -s 
3 .5 . t0-1  t . 6 .10- s  

2 . t2 . t0 -1  
t . 9 . t 0 - s  
4.9.10-z 

In addit ion,  we wi l l  t ake  c o ~ 5% and Xl, Xl, L, ~ ,  ~ wi l l  be under-  
stood as the corresponding quant i t ies  for pure i ce  and water. Thus, 

kl  = 5 .3" t0  .8 c a l / c m ,  see .  dog, ul = t . 1 5 - t 0  - t  em2/sec ,  

L =  79.7 ca l / g ,  k z =  1 .44. t0  -s c a l / c m . s e c . d e g ,  

x 2 = t . 4 4 ' t 0  -s em2/sec.  

Putting these numer ica l  values  of the parameters  into equat ion 

(3.1) we obtain the values of r and ff2(z) g iven  in the table .  The 

range  of values of z in this t ab te  correspond to an adequa t e ly  wide 
var ia t ion  in A0 (from ~ 6 . 1 0  -2 ~ C m 14 ~ C, c(c, t) < 30%). 

It is seen from the t ab le  that  

~= (z)>;~l (*), 

throughout the chosen range of values  of z, and 

AO / T,  ~ q~2 (z). (3.5) 

The values  obta ined are also app l i cab l e  to weak solutions of many  

other m i n e r a l  salts in water,  s ince k for them does not  differ g rea t ly  
from the analogous constant  for sodium chlor ide.  Thus, for c a l c i u m  
chloride,  in the same units, k ~ 1.8" 10 -3 [4]. 

Thus diffusion phenomena  have  an impor tan t  effect  on the f reez-  

ing process in aqueous sal t  solutions. 

4. Generalization of the problem for the case of partial freeze-In 
of solute in ice. It was previously assumed that  a l l  the  solute  moves  

away from the sol id i fy ing solvent.  In fact, in many  cases some por- 

t ion of i t  r emains  in the solid phase. Thus, for example ,  in the f reez-  

ing of sea water, ce l l s  ( cap i l l a r i e s  con ta in ing  strong brine)  are formed 

be tween crystals of pure i ce  and cannot  f reeze  at  the g iven  t e m p e r a -  

ture. The en t rapment  of a drop of br ine by the soiid phase occurs be -  

cause  the  so l id i f i ca t ion  front is not absolu te ly  p lane  and possesses a 

"rough" structure.  The "roughness" of the  front, and consequent ly  

the number  of entrapped br ine bubbles, is the greater ,  the  lower the 

t empera tu re  a t  which the f reez ing process occurs [6]. 
In order to t ake  account  of this phenomenon,  the model  con-  

sidered ea r l i e r  must  be  gene ra l i zed .  This can  be  done in the  fo l low-  

ing way. 

We wi l l  assume tha t  part  of the solute  remains  in the solid phase, 

the content  of solute  per uni t  v o l u m e  of this phase c, r ema in ing  con-  

s tant  (% < c0). 

The l a t t e r  assumption is  jus t i f ied i f  the spaci  M uni formi ty  and 

i so t ropic i ty  of the process are t aken  into account .  

With these  assumptions,  instead of condi t ion  (1.5) we w i l l  ob-  

viously h a v e  

dl Oc x.=! 
[ c ( l , t ) - - c . l - ~ = - - D  ~ . (4.1) 

The r ema in ing  in i t i a l  and boundary condi t ions s tay as before, and 

therefore  the expressions for A, Ei, and F i r e t a in  the i r  previous form 

(2.2). The equa t ion  for de t e rmin ing  cq as before, wil l  be  wri t ten  in 

the form of (2.3). However,  the  expression for the constant  B wi l l  be 
somewhat  different .  
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In the case under consideration this parameter is given by 

B-- ( , -+o)  B, [4.2) 

where B is given by the second equation of (2.2). Therefore in Eq. 
(3.1) the function ~l(z) stays the same, but ~2(z) takes the form 

02"(Z)= ( t--  @O ) q)2 (z). (4.3) 

Thus the freezing of a proportion c,/c 0 of the solute into the ice 
decreases the quantity q~2(z) in Eq. (3.1) by the factor (1 -- c,/%). 

According to results given in [7], c , /c  0 can reach 0.5 in freshly 
formed sea ice. 

However, in this case, as seen from the table and from equation 
(4.3), the inequality ~ ( z )  >> ~l(z) is satisfactorily fulfilled in the 
range of variation of z considered. 
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