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THEORY OF THE FREEZING PROCESS IN THICK LAYERS OF SOLUTIONS
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The geophysically important problem of the freezing of an in-
finitely thick liquid subjected to a constant external temperature
sufficient to freeze it was formulated and solved by Stefan as long
ago as 1891 11, In both nature and technology, however, solutions
of various substances are encountered rather than pure liquids, For
this reason it is of interest to consider the analogous problem for
solutions,

In this study we limit ourselves to the case of binary solutions
which on freezing do not form mixed crystals ("solid solutions”), To
solutions of this type belong, in particular, solutions of many inorganic
substances in water (for example, sodium chloride in water),

We will also assume that the concentration of the dissolved sub~
stance is less than the eutectic concentration [2], Such relatively
weak solutions are most often encountered in nature, In fact, the
salt content of sea and lake waters usually does not exceed several
percent by weight, while the eutectic concentration of sodium chlo~
ride in water is about 30%,

It is well known [2] that during the freezing of solutions of sub-
eutectic composition only the solvent solidifies, Consequenty, if a
sufficiently low constant temperature is applied to the surface of
such a solution, a zone of solvent solidification will extend from the
surface into the depth of the solution, The dissolved substance must
move away from this zone, If the freezing process is taken to be
sufficiently slow, then it is natural to assume that the withdrawal of
the substance occurs by diffusion, Thus the freezing of binary solu-
tions at relatively low concentrations will be described by simul-
taneous equations of thermal conductivity and diffusion,

We present below a mathematical formulation of the problem of
the freezing of such solutions, give its solution, and evaluate the
effect of diffusion processes during the freezing of aqueous salt solu-
tions,

1, Formulation of the problem, Let the solution initially occupy
the lower portion of a space, and the x axis be directed down into
it, We take Ty(x, t), Ty(X, 1) as the temperatures of the frozen sol-
vent and the solution, and c(x, t) as the concentration of the sub-
stance dissolved in the solution, These quantities will satisfy the
following equations:
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Here Xt) is the coordinate of the moving boundary of the phase
transition, %;, W, are the thermal conductivity coefficients of the
solid and liquid phases, D is the diffusion coefficient, In addition,
it is necessary to fulfil the initial conditions and conditions at in-
finity,
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and also the boundary conditions for Ty and T, at x = 0 and x = I(1),
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where p is the solvent density, A, A, are the thermal conductivity
coefficients of the solid and liquid phases, and L is the specific heat
of melting of the solvent.

There exists a relationship between the solution concentration
c(l, t) at the phase transition boundary and the solidification tem-
perature of the solution, T°; it is given [2] by the equation
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Here T, is the freezing temperature of the pure solvent in °K,
and M', M are the molecular weights of the solvent and the solute;
R is the gas constant,

In addition to the relations (1,3) and (1.4), one more condition
must be fulfilled at the phase transition boundary, Let us consider
the mass balance for the solute (in units of area) included between
the cross sections x = xg and X = I(t), where X, > I(t), On the one
hand, we can write
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On the other hand, using the diffusion equation, we find
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Equating (1.5) and (1.6) we obtain
dl D ac
@ T T () 97 |e=i)” a.n

Thus the problem of the freezing of a weak solution (subeutectic)
is completely described by Eqs, (1.1) and the conditions (1,2)—(1.4),
(L.7).

2. The general solution, Carrying out a dimensional analysis of
the controlling parameters of the problem, using the method de-
scribed in [3], we conclude that it is self-similar, The solution takes

the form
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Using the conditions (1.2), (1.4), (1.7) and also the first and third
conditions of (1.3), we obtain
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From the first equation of (2.1) it is seen that at the phase tran-
sition boundary the solute concentration c(l, t) is constant, where
c(l, 1) > ¢. It therefore follows from (1,4) that the temperatre T°
is also constant and T® < T (1 — kgp),

We obtain the equation for determining « from the second con-
dition (1.3),
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Itis seen from Eq. (2.3) that & = 0 for 6 = T, (1 — kcy).

If we put ¢y =0 in (2.2) and (2.,3), we obtain the formulas for
the problem of the freezing of 2 pure solvent [1, 4], Disregarding
the finite diffusion time in the solution (i.e,, for D == and ¢ = ¢),
Eq. (2.3) for the determination of « takes the form

pLxg o ‘/:_ ABexp(—a /%) _To——B
2T, (w;) T T erfe( Ve %) (1 A8 )+
M e A exp (— /%)

( ) - (2.4)

Aa T, erf Va/m ¢

3, The effect of solute diffusion on the velocity of the phase
transition boundary. As already noted, as a result of solute diffusion
from the phase transition boundary into the body of the solution, its
concentration at the boundary is maintained above the equilibrium
concentration,

This leads to an additional depression of the solution freezing
temperature, Since the diffusion constants of solutes in liquids are
small, it is expected that this effect will be significant, To evalu-
ate this effect quantitatively it is necessary to make use of Eq, (2.3).

Let us consider, for simplicity, the case when the initial tem-
perature Tq = T (1 = keg), Then 1 — (Ty — 6)/46 =0 and Eq. (2.3)
can be rewritten in the following form:
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Here B(2z) is given by Eq. (2,2). From physical considerations it
is clear that the quantity TQ‘AG must be a monotonically increasing

function of z, giving the single-valued inverse relation z = f(T 'A8).

Forz « 1
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If the condition v%y/Dz « 1 is also fulfilled, then
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Equation (3.1) shows what the relative difference should be be-
tween the initial and boundary temperatures for the given law of
boundary movement (z = const). The term &,(z) in this equation
characterizes the diffusion effect,

If, in fact, diffusion were to occur instantaneously (D = =, ¢ =
=¢q), then
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In evaluating the quantities (2} and $,(z) we will consider the
important practical case of a solution of sodium chloride in water,
If the sodium chloride concentration is expressed in weight percent,
then for such a solution k =2,2.10"% (see [4]) and D = 10"° cm?/sec.

z [ o | o
3.5.104 [1.6.10~7 | 2.42.10~
3.5.40~% [1.6.10-% | 1.9.103
3.5-10% {1.6-10~ | 4.9.10-

In addition, we will take ¢y & 5% and Ay, W, L, %, Ay will be under-
stood as the corresponding quantities for pure ice and water, Thus,

Ay = 5.3-407% cal/cm. sec- deg, %, = 1.15-40"? cm’/sec,
L = 179.7 cal/g, Ay= 1.44-10" cal/cm.sec.deg,
%, = 1.44-107% cm®/sec,

Putting these numerical values of the parameters into equation
(3.1) we obtain the values of ®y(z) and ®,(z) given in the table, The
range of values of z in this table correspond to an adequately wide
variation in A8 (from ®6+107° ° C 10 14° C, c(c, t) < 30%).

It is seen from the table that

@, (220, (2),
throughout the chosen range of values of z, and
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The values obtained are also applicable to weak solutions of many
other mineral salts in water, since k for them does not differ greatly
from the analogous constant for sodium chloride, Thus, for calcium
chloride, in the same units, k ~ 1,8+ 1073 [4].

Thus diffusion phenomena have an important effect on the freez-~
ing process in aqueous salt solutions,

4, Generalization of the problem for the case of partial freeze~in
of solute in ice. It was previously assumed that all the solute moves
away from the solidifying solvent, In fact, in many cases some por-
tion of it remains in the solid phase, Thus, for example, in the freez-
ing of sea water, cells (capillaries containing strong brine) are formed
between crystals of pure ice and cannot freeze at the given tempera-
ture, The entrapment of a drop of brine by the solid phase occurs be-
cause the solidification front is not absolutely plane and possesses a
"rough” structure. The "roughness” of the front, and consequently
the number of entrapped brine bubbles, is the greater, the lower the
temperature at which the freezing process occurs [8].

In order to take account of this phenomenon, the model con-
sidered earlier must be generalized. This can be done in the follow-
ing way,

We will assume that part of the solute remains in the solid phase,
the content of solute per unit volume of this phase c, remaining con-
stant (¢, < ¢p)

The latter assumption is justified if the spacial uniformity and
isotropicity of the process are taken into account,

With these assumptions, instead of condition (1,5) we will ob-
viously have

[el, ) — col b= —D 22 - 1)

The remaining initial and boundary conditions stay as before, and
therefore the expressions for A, Ei, and Fj retain their previous form
(2.2). The equation for determining e, as before, will be written in
the form of (2.3), However, the expression for the constant B will be
somewhat different,
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In the case under consideration this parameter is given by

, Cx
B =(i—To') B, (4.2)
where B is given by the second equation of (2.2). Therefore in Eq.
(3.1) the function &,(z) stays the same, but ®,(z) takes the form

o) (5= (1—2) 0, (s). (4.3)

Thus the freezing of a proportion c/cy of the solute into the ice
decreases the quantity ®,(z) in Eq. (3,1) by the factor (1 — c./cp).

According to results given in [7], c./cy can reach 0,5 in freshly
formed sea ice,

However, in this case, as seen from the table and from equation
(4.3), the inequality ®5(z) » &(z) is satisfactorily fulfilled in the
range of variation of z considered.
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